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Results for three interrelated problems are obtained by making use of solutions 
of boundary-value problems obtained in a different context. The first one concerns 
a thin rigid circular disk rotating in a slow stream of viscous fluid, both when the 
fluid is conducting and when it is non-conducting. For the case of a conducting 
fluid formulae are given for both small and large Hartmann numbers. The second 
problem concerns a disk performing simple harmonic rotary oscillations about its 
axis of symmetry in a non-conducting viscous fluid which is at rest a t  infinity. 
The last problem is that of a.n arbitrary axisymmetric solid oscillating about its 
axis of symmetry in a bounded viscous fluid, and the solution is illustrated by the 
case of an oscillating disk, 

1. Introduction 
The slow rotation of an axisymmetric solid in a viscous fluid whether electric- 

ally conducting or non-conducting, has been the subject of many investigations. 
Some of these investigations are based on the Stokes flow equations and others 
on the equations of Oseen flow. Sowerby (1953) discussed this problem for the 
non-conducting case and used the Oseen flow equations. Shail(l967) has recently 
given an approximate formula for the couple on an insulated, axisymmetric solid 
which rotates slowly in a viscous fluid of finite conductivity while the fluid is 
contained in an insulated vessel and a uniform magnetic field is applied parallel to 
the axis of rotation. His analysis is also based on the Oseen type of linearized 
equations of magnetohydrodynamics. He solves these equations by using an 
integral equation technique evolved by Williams (1964) and his results are valid 
for small Hartmann numbers. Shail observes that, since the linearized equations 
of magnetohydrodynamics are valid also for large Hartmann numbers (Waechter 
1966), his analysis can be extended for large Hartmann numbers as well. 

In  $ 2  of this paper we point out that results for the case of a circular disk 
rotating in an infinite expanse of a viscous fluid, either conducting or non-conduc- 
ting for small or for large Hartmann numbers, can be deduced from the analysis 
of Collins (1962) and Thomas (1968) in elastodynamics. In fact, the formula thus 
obtained for the couple for small Hartmann numbers contains a few higher order 
terms than the formula obtained by Iami (1960) and Shail (1967). On the other 
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hand, the formula for the couple for large Hartmann numbers, as obtained in the 
present paper, appears to be new. 

The rotary oscillations set up in an infinite mass of a viscous incompressible 
fluid by a rigid axisymmetric solid which is performing simple harmonic oscilla- 
tions about its axis of symmetry, were discussed by the author (Kanwal 1955) 
on the basis of Stokes flow equations. The results were obtained in terms of 
spheroidal wave functions of complex arguments whose numerical values are not 
available. Using the above-mentioned analysis of Collins, we can obtain the value 
of the couple and the velocity field for the case of a circular disk. We present this 
analysis in $ 3  below. 

The method of Shail’s paper (Shail 1967) is effective in giving the first few 
terms in the approximate formulae in the analysis of the rotations and vibrations 
of axisymmetric solids of various shapes. It is particularly effective in deriving 
the boundary effects when the fluid is bounded. We use the method here to dis- 
cuss the rotary oscillations of axisymmetric bodies in a viscous incompressible 
fluid which is contained in an infinite cylindrical vessel; the axis of the body coin- 
cides with the axis of the vessel. 

Although we have restricted our attention to the case of the fluid at  rest at  
infinity for the problems of rotary oscillations, the analysis of 5 3 can be readily 
extended to the case of a uniform stream at infinity. Furthermore, by a slight 
re-interpretation of symbols, the analysis of § 4 can be applied to study the tor- 
sional oscillations of light rigid bodies which are embedded in a bounded and iso- 
tropic elastic medium. 

In the present paper we shall be content to establish the connexion between 
our problems and the boundary-value problems in different fields of continuum 
mechanics discussed by the authors cited above. Thereafter the mathematical 
details can be obtained from their papers. 

2. A rotating disk in Oseen flow 
2.1. Non-conducting Jluid 

We use cylindrical polar co-ordinates (p, $, z )  The disk occupies the region x = 0, 
0 < p < a, and is rotating slowly with constant angular velocity S l  about its 
axis of symmetry. The fluid has a slow uniform velocity (0 ,  0, W )  at infinity. In  
view of the axial symmetry, only the transverse component v of the velocity field 
is non-zero and it satisfies the differential equation (Sowerby 1953) 

which has been non-dimensionalized with a as the typical length and W as the 
characteristic velocity. Furthermore, c = Wa/2v = &9?, and W is the Reynolds 
number. We assume that W and UQ are of the same order of magnitude and thus 
by a suitable choice of the parameters we can make W = aQ. The substitution 
v = eczv’(p, x )  in (1 )  gives (after dropping the dashes) 
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where k2 = -c2. The boundary conditions are 

v = p, on the disk z = 0 (0 < p < l ) ,  

v - t O  as p,z-+co. ( 3 )  and 

On the part p > 1 of the surface z = 0, the stress component pz4 = 0. 
The boundary-value problem embodied in the equations ( 2 )  and ( 3 )  is similar 

to the one studied by Collins (1962). The values of the velocity field and the viscous 
torque can be obtained from his analysis. For example, the value of the viscous 
torque T, so obtained, is 

2.2. Conducting Jluid, small Hartmann number 

The purpose of this section is to determine the torque on an insulated thin disk 
of radius a which rotates slowly about its axis of symmetry in an infinite expanse 
of viscous fluid of finite conductivity. There is a uniform magnetic field B, 
applied parallel to the axis of the disk, and the cylindrical polar co-ordinate 
system is oriented in the same way with respect to the disk as in the previous 
section. Imai (1960) and Shail (1967) have shown that the q5 component v of the 
velocity field can be written as v = 4 (vl + vp1); the quant'ities v1 and v-l satisfy 
the non-dimensional equations 

where s = 1 for vl and s = - 1 for v - ~ ,  and K is the Hartmann number (r/pe)4 Boa, 
u is the conductivity and ,ue is the magnetic permeability of the fluid. The 
boundary conditions are 

v1 = v-l = p, on the disk z = 0 (0 6 p < l), 
and v1 and v-,-+O as z,p-+oo. ( 6 )  

The boundary-value problem given by ( 5 )  and (6) is again equivalent to Collins's 
analysis. Following that analysis we can calculate both v1 and w-l and therefore 
the velocity. Similarly, the value of the torque can be deduced from his paper 
and has the value 

56 1 012 4 11 T=-- 1 + - - - a3 + __ a4 - ~ a5 + O ( d ) ,  32p12u3[ 3 5 9n 105 2257~ (7) 

where 2a: = K ,  K < 1. The first three terms agree with Shail's result. 

2.3. Conducting Jluid, lurge Hurtmunn number 

Although the linearized equations of hydrodynamics are valid only for small 
Reynolds numbers, it has been shown by Waechter (1966) that the linearized 
equations of magnetohydrodynamics are valid for both small and large Hart- 
mann numbers. In  this section we discuss the slow steady rotation of the circular 
disk in a conducting fluid for large Hartmann numbers K.  Now Thomas (1968) 
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has extended Collins’s work to large frequencies in elastodynamics. Thomas’s 
analysis is applicable in this section in precisely the same manner as Collins’s 
analysis was applicable in the last section. In  fact we can deduce the value of the 
torque on the disk for K p 1;  it is 

1 1  3 3 
T = -2aTpaa3 -+-+---+o - 

[ 2  a 4a2 8a3 (:4)]9 

where 2 a  = K ,  as in the previous section. As far as we are aware, the formula (8) 
is a new result.? 

3. Rotary oscillations of a circular disk 
Let us consider a circular disk performing rotary oscillations with angular 

velocity QeeiWt in an infinite expanse of viscous incompressible fluid at rest at 
infinity. As in $ 2  above, we take the centre 0 and the axis of the disk to be the 
origin and the z axisof cylindrical polar co-ordinates. Since onlyrotaryoscillations 
are set up in the fluid when the disk performs simple harmonic oscillations about 
its axis, the components of the velocity field in the p and x directions vanish at  
all points while the 4 component is non-zero. 

When we non-dimensionalize the equation of motion and the boundary con- 
ditions with a, the radius of the disk, as the standard length and with Qa as the 
typical velocity, the boundary-value problem takes the shape: 

with v = P, on z = O  ( O d p <  l ) ,  

v + O  as p,z+co, 

and p2 = iwa2/v = i9, where 9 is the rotational Reynolds number. Moreover, 
the stress component ps4 = 0 on the surface x = 0, p > 1. We, once again, appeal 
to Collins’s work and get the values of the velocity field as well as the torque. 
The value of the viscous torque is 

32pCla3eiWt 
3 

T = -  

- [” --- 2 4 2 W t + = q i ) + 0 ( 9 3 ) .  (11) 
5 9n 2 2 5 ~  

4. Boundary effects 
The techniqueinvolvedin the previous sections is suitable mainlyforboundary- 

value problems relating to a circular disk. By following the discussion of Shail 
(1967), we can solve boundary-value problems relating to various other con- 
figurations. The difficulty in this method is that it becomes cumbersome to derive 
higher orders terms in the approximate formulae, although the first few terms are 

t Note added in proof. In a paper recently published (Shail & Williams 1969), the first 
three terms in this expression for the torque are given. 
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readily obtained. On the other hand, this technique is very effective for obtaining 
boundary effects approximately. In  this section we discuss the slow rotary oscil- 
lations of an axisymmetric solid B in an incompressible viscous fluid bounded 
by a concentric and coaxial circular cylinder. This problem is of interest in 
various fields such as viscometry and the agitation of viscous fluids. From the 
analysis of the previous section we can write down the boundary-value problem 
as 

v = p  on S ,  

v =  0 on C, (13) 

where S is the surface of the oscillating solid B and C is the surface of the bounding 
vessel. The quantity p2 is equal to i9, and we are considering the case 9t < 1. 
With 

the equation (12) becomes the Helmholtz equation 

w = vcosq5, 

( V 2 - p ) w  = 0, 
and the boundary conditions are 

w=pcosq5 on 

w = O  on C. 

The solution to the system of equations (14) and (15) can be deduced from the 
analysis of Shail(l967) for solids of various shapes. For example, the value of the 
viscous torque on a thin disk of radius a situated symmetrically in an infinite 
cylinder of radius b, and oscillating slowly with angular velocity 0 eiot, is 

i 9  4i l + i  
eiWt+O(B?,~5).  (16) 

In  equation (16) 8 = alb such that 8 4 1, q = /3/s such that IqI is O(l) ,  and 

In conclusion, we remark that the analysis of this section may be applied with 
a slight reinterpretation of a few symbols to the low frequency torsional oscilla- 
tion of rigid bodies in a bounded and isotropic elastic medium. In fact, one 
denotes the density of the elastic medium by po, sets 

p2 = -pou2a2/p, (18) 

and interperts p as the modulus of rigidity. Furthermore, the Oseen problems of 
$ 2  can also be discussed for the case of the rotary oscillations with the help of 
Shail’s technique. 

This research was sponsored by a grant from the National Science Foundation. 
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